- PII
- S3034584725020097-1
- DOI
- 10.7868/S3034584725020097
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 73-82
- Abstract
- We consider the problem of finding a binary solution to a system of linear equations modulo three. In case the number of equations is less than a sufficiently slowly growing function of the number of variables, a new polynomial-time algorithm is proposed to recognize the existence of a binary solution to such a system. The algorithm is based on the note that if the coefficient matrix contains non-zero columns proportional to each other, then the elimination of the corresponding variables preserves the property of having no binary solution to the system. In particular, every system of two equations in five variables allows the elimination of some variables that preserves the property of having no binary solution to the system. Based on these results, we propose an errorless heuristic algorithm, which is implemented using the Python programming language. The NumPy library is used to represent matrices and perform basic operations. The input is the augmented matrix. An empirical running time estimate has been calculated using the implementation. It has been experimentally shown that the algorithm is more efficient for sparse systems of equations. Obviously, the binary search method allows finding a binary solution to the system when one exists. This observation opens up the possibility of practical use, in particular, for solving problems of mathematical biology.
- Keywords
- конечное поле система линейных уравнений система компьютерной алгебры
- Date of publication
- 01.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 176
References
- 1. Селиверстов А.В. Обобщение задачи о сумме подмножеств и кубические формы //Журнал вычислительной математики и математической физики. 2023. Т. 63.№1. С. 51–60.
- 2. Seliverstov A.V. Generalization of the subset sum problem and cubic forms. Computational Mathematics and Mathematical Physics, 2023, vol. 63, no. 1, pp. 48–56. DOI: 10.1134/S0965542523010116.
- 3. Бойков А.А., Селиверстов А.В. О кубе и проекциях подпространства // Вестн. Удмуртск. ун-та. Матем. Мех. Компьют. науки. 2023. Т. 33. № 3. С. 402–415. DOI: 10.35634/vm230302.
- 4. Boykov A.A., Seliverstov A.V. On a cube and subspace projections. Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2023, vol. 33, no. 3, pp. 402–415. DOI: 10.35634/vm230302.
- 5. Karteszi F. Introduction to Finite Geometries. Budapest: Akademian Kiado, 1976.
- 6. Feng T., Lu J. New families of flag-transitive linear spaces // Finite Fields and Their Applications. 2023. Vol. 87. No. 102156. P. 1–10. DOI: 10.1016/j.ffa.2022.102156.
- 7. Stoichev S.D., Gezek M. Unitals in projective planes of order 25 // Mathematics in Computer Science. 2023. Vol. 17. No. 5. P. 1–19. DOI: 10.1007/s11786-023-00556-9.
- 8. Когабаев Н.Т. О системах диофантовых уравнений над конечными конфигурациями // Сибирский математический журнал. 2023. Т. 64. № 2. С. 321–338.
- 9. Kogabaev N.T. Systems of Diophantine equations over finite configurations. Siberian Math. J., 2023, vol. 64, no. 2, pp. 325–337. DOI: 10.1134/S0037446623020076.
- 10. Байрамов Р.Э., Блинков Ю.А., Левичев И.В., Малых М.Д., Мележик В.С. Аналитическое исследование кубатурных формул на сфере в системах компьютерной алгебры // Журнал вычислительной математики и математической физики. 2023. Т. 63.№1. С. 93–101.
- 11. Bairamov R.E., Blinkov Yu.A., Levichev I.V., Malykh M.D., Melezhik V.S. Analytical study of cubature formulas on a sphere in computer algebra systems. Computational Mathematics and Mathematical Physics, 2023, vol. 63, no. 1, pp. 77–85. DOI: 10.1134/S0965542523010050.
- 12. Hesse O. Uber die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln // Journal fur die Reine und Angewandte Mathematik. 1844. Vol. 28. P. 68–96. DOI: 10.1515/crll.1844.28.68.
- 13. Cacchiani V., Iori M., Locatelli A., Martello S. Knapsack problems — An overview of recent advances. Part I: Single knapsack problems // Computers and Operations Research. 2022. Vol. 143. No. 105692. P. 1–13. DOI: 10.1016/j.cor.2021.105692.
- 14. Cacchiani V., Iori M., Locatelli A., Martello S. Knapsack problems — An overview of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems // Computers and Operations Research. 2022. Vol. 143. No. 105693. P. 1–14. DOI: 10.1016/j.cor.2021.105693.
- 15. Zhang L., Quweider M., Khan F., Lei H. Splitting NPcomplete sets infinitely // Information Processing Letters. 2024. Vol. 186. No. 106472. P. 1–7. DOI: 10.1016/j.ipl.2024.106472.
- 16. Vyalyi M.N. Testing the satisfiability of algebraic formulas over the field of two elements // Probl. Inf. Transm. 2023. Vol. 59. P. 57–62. DOI: 10.1134/S0032946023010052.
- 17. Яшунский А.Д. О суммах бернуллиевских случайных величин по модулю 3 // Математические заметки. 2022. Т. 111.№1. С. 154–157. DOI: 10.4213/mzm13214.
- 18. Yashunskii A.D. On sums of Bernoulli random variables modulo 3. Mathematical Notes, 2022, vol. 111, no. 1, pp. 166–169. DOI: 10.1134/S0001434622010205.
- 19. Sanna C. On the distribution of the entries of a fixedrank random matrix over a finite field // Finite Fields and Their Applications. 2024. Vol. 93. No. 102333. P. 1–15. DOI: 10.1016/j.ffa.2023.102333.
- 20. Балакин Г.В. Распределение ранга случайных матриц над конечным полем // Теория вероятностей и ее применения. 1968. Т. 13. № 4. С. 631–641.
- 21. Balakin G.V. The distribution of the rank of random matrices over a finite field. Theory of Probability and its Applications, 1968, vol. 13, no. 4, pp. 594–605. DOI: 10.1137/1113076.
- 22. Круглов В.И., Михайлов В.Г. О ранге случайной матрицы над простым полем, состоящей из независимых строк с заданными числами ненулевых элементов // Математические вопросы криптографии. 2020. Т. 11.№3. С. 41–52. DOI: 10.4213/mvk331.
- 23. Kruglov V.I., Mikhailov V.G. On the rank of random matrix over prime field consisting of independent rows with given numbers of nonzero elements. Mat. Vopr. Kriptogr., 2020, vol. 11, no. 3, pp. 41–52. DOI: 10.4213/mvk331.
- 24. Cooper C. On the distribution of rank of a random matrix over a finite field // Random Structures and Algorithms. 2000. Vol. 17. No. 3-4. P. 197–212. DOI: 10.1002/1098-2418(200010/12)17:3/43.0.CO;2-K.
- 25. Рыбалов А. Генерические полиномиальные алгоритмы для проблемы о рюкзаке в некоторых матричных полугруппах // Сибирские электронные математические известия. 2023. Т. 20. № 1. С. 100–109.
- 26. Rybalov A.N. Generic polynomial algorithms for the knapsack problem in some matrix semigroups. Siberian Electronic Mathematical Reports, 2023, vol. 20, no. 1, pp. 100–109 (In Russian).
- 27. Рыбалов А.Н. Генерически неразрешимые и трудноразрешимые проблемы // Прикладная дискретная математика. 2024.№63. С. 109–116.
- 28. Rybalov A.N. Generically undecidable and hard problems. Prikl. Diskr. Mat., 2024, no. 63, pp. 109–116 (In Russian).
- 29. Nayak S., Patgiri R. A review on role of Bloom filter on DNA assembly // IEEE Access. 2019. Vol. 7. P. 66939–66954. DOI: 10.1109/ACCESS.2019.2910180.
- 30. Bille P., Gortz I.L., Stordalen T. Predecessor on the ultra-wide word RAM // Algorithmica. 2024. Vol. 86. P. 1578–1599. DOI: 10.1007/s00453-023-01193-1.
- 31. Рыбалов А.Н. О генерической сложности решения уравнений над натуральными числами со сложением // Прикладная дискретная математика. 2024.№64. С. 72–78.
- 32. Rybalov A.N. On the generic complexity of solving equations over natural numbers with addition. Prikl. Diskr. Mat., 2024, no. 64, pp. 72–78 (In Russian).