RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

STUDY OF SURFACE REPRESENTATION METHODS BASED ON SIGNED DISTANCE FUNCTIONS

PII
S3034584725030027-1
DOI
10.7868/S3034584725030027
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
15-26
Abstract
The paper studies surface rendering methods based on ray tracing for representations based on signed distance functions. The main objects of interest were the rendering algorithm execution time, the amount of memory occupied, and the accuracy of the surface representation estimated by the render using the PSNR metric. Six different representations and four intersection search algorithms were analyzed. In all cases, a bounding volume hierarchy was used as an accelerating structure. The comparison revealed promising representations and algorithms and showed that distance functions in some cases are not inferior to polygonal models in speed, while they can win in terms of memory consumption and represent the surface with a good level of accuracy.
Keywords
рендеринг трассировки лучей визуализация 3D-моделей функции дистанции со знаком
Date of publication
02.06.2025
Year of publication
2025
Number of purchasers
0
Views
85

References

  1. 1. Rogers D.F. An introduction to NURBS: with historical perspective. Elsevier, 2000.
  2. 2. Sitzmann V. et al. Implicit neural representations with periodic activation functions // Advances in neural information processing systems. 2020. V. 33. P. 7462-7473.
  3. 3. Takikawa T. et al. Neural geometric level of detail: Real-time rendering with implicit 3d shapes // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. P. 11358-11367.
  4. 4. Luan F. et al. Unified shape and svbrdf recovery using differentiable monte carlo rendering // Computer Graphics Forum. 2021. V. 40. № 4. P. 101-113.
  5. 5. Nicolet B., Jacobson A., Jakob W. Large steps in inverse rendering of geometry // ACM Transactions on Graphics (TOG). 2021. V. 40. № 6. P. 1-13.
  6. 6. Vicini D., Speierer S., Jakob W. Differentiable signed distance function rendering // ACM Transactions on Graphics (TOG). 2022. V. 41. № 4. P. 1-18.
  7. 7. Cao Y., Li H. DiffSDF: Learning Implicit Surface from Noisy Point Clouds // 2023 International Conference on Digital Image Computing: Techniques and Applications (DICTA). IEEE, 2023. P. 197-204.
  8. 8. Hart J.C. Sphere tracing: A geometric method for the antialiased ray tracing of implicit surfaces // The Visual Computer. 1996. V. 12. № 10. P. 527-545.
  9. 9. Inigo Quilez. Distance Functions // WEB publication. https://iquilezles.org/articles/distfunctions/ (accesed: 12.06.2024)
  10. 10. Ingo Quilez. Distance Functions // WEB publication. https://iquilezles.org/articles/terrainmarching/ (accesed: 12.06.2024)
  11. 11. Polkowski D. San Base: Авангард компьютерной графики // WEB publication. https://www.youtube.com/@lashenko (accesed: 12.06.2024)
  12. 12. Frisken S.F. et al. Adaptively sampled distance fields: A general representation of shape for computer graphics // Proceedings of the 27th annual conference on Computer graphics and interactive techniques. 2000. P. 249-254.
  13. 13. Sellers G., Kessenich J. Vulkan programming guide: The official guide to learning vulkan // Addison-Wesley Professional, 2016.
  14. 14. Koschier D. et al. An hp-adaptive discretization algorithm for signed distance field generation // IEEE transactions on visualization and computer graphics. 2017. V. 23. № 10. P. 2208-2221.
  15. 15. Söderlund H.H., Evans A., Akenine-Möller T. Ray Tracing of Signed Distance Function Grids // Journal of Computer Graphics Techniques. 2022. V. 11. № 3. P. 94-113.
  16. 16. Fujimoto A., Iwata K. Accelerated ray tracing // Computer Graphics: Visual Technology and Art Proceedings of Computer Graphics Tokyo′ 85. Tokyo: Springer Japan, 1985. P. 41-65.
  17. 17. Weier Р., Rath А., Michel É., Georgiev I., Slusallek P., Boubekeur T. 2N-BVH: Neural ray queries with bounding volume hierarchies. In ACM SIGGRAPH 2024 Conference Papers (SIGGRAPH '24). 2024. Association for Computing Machinery, New York, NY, USA, Article 99. P. 1-11. https://doi.org/10.1145/3641519.3657464
  18. 18. Fujieda S., Kao C.C., Harada T. Neural Intersection Function // arXiv preprint arXiv:2306.07191.2023.
  19. 19. Galin E. et al. Segment tracing using local lipschitz bounds // Computer Graphics Forum. 2020. V. 39. № 2. P. 545-554.
  20. 20. Marmitt G. et al. Fast and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray Tracing // VMV. 2004. V. 4. P. 429-435.
  21. 21. Stich M., Friedrich H., Dietrich A. Spatial splits in bounding volume hierarchies // In Proceedings of the Conference on High Performance Graphics 2009 (HPG '09). 2009. Association for Computing Machinery, New York, NY, USA. P. 7-13. https://doi.org/10.1145/1572769.1572771
  22. 22. Wald I. et al. Embree: a kernel framework for efficient CPU ray tracing // ACM Transactions on Graphics (TOG). 2014. V. 33. № 4. P. 1-8.
  23. 23. Frolov V., Sanzharov V., Galaktionov V. Kernel_slicer: high-level approach on top of GPU programming API // 2022 Ivannikov Ispras Open Conference (ISPRAS). IEEE, 2022. P. 11-17.
  24. 24. Жданов Д.Д., Потемин И.С., Жданов А.Д. Использование технологий Embree для трассировки лучей в оптических системах с поверхностями свободной формы // Труды 33-й Международной конференции по компьютерной графике и машинному зрению ГрафиКон 2023, ИПУ им. В.А. Трапезникова РАН, Москва, Россия, 2023. V. 33. P. 97-107.
  25. 25. Jones M.W. Distance field compression // Journal of WSCG. 2004. V. 12. № 2. P. 199-204.
  26. 26. Nießner M., Zollhöfer M., Izadi S., Stamminger M. Real-time 3D reconstruction at scale using voxel hashing // ACM Trans. Graph. 32, 6, Article 169 (November 2013), 11 p. https://doi.org/10.1145/2508363.2508374
  27. 27. Boyko A.I., Matrosov M.P., Oseledets I.O., Tsetserukou D., Ferrer G. Tt-tsdf: Memory-efficient tsdf with low-rank tensor train decomposition // In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10116-10121. IEEE, 2020.
  28. 28. Garland M., Heckbert P.S. Surface Simplification Using Quadric Error Metrics. Seminal Graphics Papers: Pushing the Boundaries. V. 2 (1st ed.). 2023. Association for Computing Machinery, New York, NY, USA, Article 15, P. 131-138. https://doi.org/10.1145/3596711.3596727
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library