RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

FINITE DECIMAL FRACTIONS AS ENTRIES OF NONSINGULAR MATRICES

PII
S3034584725020104-1
DOI
10.7868/S3034584725020104
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
83-90
Abstract
How can one check, for a given nonsingular real number matrix the entries of which have only a finite number of decimal digits, whether this matrix will remain nonsingular after some decimal digits are arbitrarily added to some (explicitly specified in advance) of its entries? It turns out that this problem is algorithmically solvable. A computer implementation of the proposed algorithmic solution is discussed.
Keywords
усеченные числовые матрицы невырожденность числовых матриц алгоритм Тарского алгоритм цилиндрической декомпозиции компьютерная алгебра
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
62

References

  1. 1. Abramov S., Barkatou M. On Strongly Non-Singular Polynomial Matrices// In: Schneider C., Zima E. (eds.). Advances in Computer Algebra. Springer Proceedings in Mathematics & Statistics. 2018. Vol. 226. P. 1–17.
  2. 2. Tarski A. A decision method for elementary algebra and geometry // Santa Monica CA: RAND Corp., 1948.
  3. 3. Матиясевич Ю.В. АлгоритмТарского // Компьютерные инструменты в образовании. 2008. № 6. С. 4–14.
  4. 4. Matiyasevich Yu.V. Tarski’s algorithm // Komput. Instrum. v Obrazovanii., 2008, no. 6, pp. 4–14.
  5. 5. Collins G.E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition // In Proc. 2nd GI Conf. Automata Theory and Formal Languages. New York: Springer-Verlag, 1975. P. 134–183.
  6. 6. Davenport J., Heintz J. Real quantifier elimination is doubly exponential // J. Symb. Comput. 1988.№5. P. 29–35.
  7. 7. Дэвенпорт Дж., Сирэ И., Турнье Э. Компьютерная алгебра. Системы и алгоритмы алгебраических вычислений. М.: Мир, 1991.
  8. 8. Davenport J., Siret Y., Tournier E. Calcul formel, Paris: Masson, 1987.
  9. 9. Абрамов С.А., Рябенко А.А. О строго невырожденных числовых матрицах // Труды XV научной конференции “Дифференциальные уравнения и смежные вопросы математики”. Коломна: ГСГУ, 2025. С. 19–24.
  10. 10. Abramov S.A., Ryabenko A.A.Onstrongly nonsingular number matrices // Trudy XV Nauchn. Konf. On Differential Equations and Related Problems of Mathematics, Kolomna: Gos. Sotsial’noGumanitarnyi Univ. 2025. P. 19–24.
  11. 11. Basu S., Pollack R., Coste-Roy M.-F. Algorithms in real algebraic geometry // Algorithms and Computation in Mathematics. Vol. 10. Springer, 2006.
  12. 12. Caviness B.F., Johnson J.R. (eds.). Quantifier elimination and cylindrical algebraic decomposition // Texts & Monographs in Symbolic Computation, Springer, 1998.
  13. 13. Maple online help: http://www.maplesoft.com/support/help/
  14. 14. Tonks Z. A Poly-algorithmic quantifier elimination package in Maple // In Jurgen Gerhard and Ilias Kotsireas, editors, Maple in Mathematics Education and Research. Springer International Publishing. 2020. P. 176–186.
  15. 15. http://www.ccas.ru/ca/_media/str_nonsing.mw
  16. 16. http://www.ccas.ru/ca/_media/str_nonsing.pdf
  17. 17. Кострикин А.И. Введение в алгебру. М.: Физматлит, 1977.
  18. 18. Kostrikin A.I. Introduction to Algebra, Berlin: Springer, 1982.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library