RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

ALGORITHM FOR FINDING SINGULAR POINTS OF A GENERAL ALGEBRAIC HYPERSURFACE

PII
S3034584725020069-1
DOI
10.7868/S3034584725020069
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
49-54
Abstract
In this paper, an algorithm for calculating the parameterization of the Horn–Kapranov — discriminant set and singular points of an algebraic hypersurface, using the Maple computer algebra system, is proposed.
Keywords
A-дискриминант A-дискриминантное множество параметризация A-дискриминантного множества сингулярность точки общей алгебраической гиперповерхности
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
73

References

  1. 1. Abramov S.A., Petkovsek M., Ryabenko A.A. Hypergeometric Solutions of First-order Linear Difference Dystems with Rational-function Coefficients // Lecture Notes in Computer Science. 2015.№9301. P. 1–14.
  2. 2. Abramov S.A., Ryabenko A.A., Khmelnov D.E. Regular Solutions of Linear Ordinary Differential Equations and Truncated Series // Comput. Math. Math. Phys. 2020.№60(1). P. 1–14.
  3. 3. Apanovich M.S., Lyapin A.P., Shadrin K.V. Solving the Cauchy Problem for a Two-Dimensional Difference Equation at a Point Using Computer Algebra Methods // Programming and Computer Software. 2021.№47(1). P. 1–5.
  4. 4. Kytmanov A.A., Lyapin A.P., Sadykov T.M. Evaluating the Rational Generating Function for the Solution of the Cauchy Problem for a Two-dimensional Difference Equation with Constant Coefficients // Programming and Computer Software. 2017. №43(2). P. 105–111.
  5. 5. Lyapin A.P., Mikhalkin E.N. Algorithm of calculation of the truncation of the discriminant of a polynomial // Programming and Computer Software. 2023.№49(1). P. 49–53.
  6. 6. Barsan V. An Improved Algorithm for Solving the Quintic Equation // Romanian Reports in Physics. 2022.№74(4). P. 117.
  7. 7. Лебедев А.В., Трубников Ю.В., Чернявский М.М. Об определителях Адамара и Вандермонда и методе Бернулли–Эйлера–Лагранжа–Эйткена вычисления корней полиномов // Матем. заметки. 2024.№116(1). P. 91–108.
  8. 8. Lebedev A.V., Trubnikov Yu.V., Chernyavskii M.M. On the Hadamard and Vandermonde determinants and the Bernoulli–Euler–Lagrange–Aitken method for calculating the roots of polynomials, Matem. zametki., 2024, vol. 116, no. 1, pp. 91–108.
  9. 9. Gelfand I., Kapranov M., Zelevinsky A. Discriminants, Resultants and Multidimensional determinants, Birkhauser: Boston, 1994.
  10. 10. Passare M., Tsikh A.K. Algebraic equations and hypergeometric series // The legacy of Niels Henrik Abel, Springer: Berlin–Heidelberg–New York, 2004. P. 653–672.
  11. 11. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Singular points of complex algebraic hypersurfaces // Journal of Siberian Federal University. Mathematics & Physics. 2018.№11(6). P. 670–679.
  12. 12. Antipova I.A., Mikhalkin E.N., Tsikh A.K. Rational expressions for multiple roots of algebraic equations // Matem. sb. 2018.№209(10). P. 1419–1444.
  13. 13. Antipova I.A., Tsikh A.K. The discriminant locus of a sistem of n Laurent polynomials in n variables // Izv. Math. 2012.№76(5). P. 881–906.
  14. 14. Krasikov V.A., Sadykov T.M. On the analytic complexity of discriminants // Proceedings of the Steklov Institute of Mathematics. 2012. № 279. P. 78–92.
  15. 15. Beloshapka V.K. Analytic complexity of functions of two variables // Russ. J. Math. Phys. 2007.№14(3). P. 243–249.
  16. 16. Dickenstein A., Sadykov T.M. Algebraicity of solutions to the Mellin system and its monodromy // Doklady Mathematics. 2007.№75(1). P. 80–82.
  17. 17. Lawton W.M. An Explanation of Mellin’s 1921 Paper // The Bulletin of Irkutsk State University. Series Mathematics. 2023.№46. P. 98–109.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library