RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

ON CALCULATION OF ABELIAN DIFFERENTIALS

PII
S3034584725010037-1
DOI
10.7868/S3034584725010037
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
21-25
Abstract
This paper considers the construction of the fundamental function and Abelian differentials of the third kind on a plane algebraic curve over the field of complex numbers that has no singular points. The algorithm for constructing differentials of the third kind was described in Weierstrass’s lectures. The paper discusses its implementation in the Sage computer algebra system. The specifics of this algorithm, as well as the very concept of the differential of the third kind, implies the use of both rational numbers and algebraic numbers, even when the equation of a curve has integer coefficients. Sage has a built-in tool for computations in algebraic number fields, which allows the Weierstrass algorithm to be implemented almost literally. The simplest example of an elliptic curve shows that it requires too many resources, far beyond the capabilities of an office computer. A symmetrization of the method is proposed and implemented, which makes it possible to solve the problem while saving a significant amount of computational resources.
Keywords
компьютерная алгебра символьное интегрирование алгебраические функции
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
89

References

  1. 1. Moses J. Symbolic Integration: The Stormy Decade // Communications of the ACM. 1971. V. 14. № 8. P. 548–560.
  2. 2. Bronstein M. Symbolic Integration I. Transcendental Functions. Springer, 2005.
  3. 3. Parisse B. Algorithmes de calcul formel, 2011. http://www-fourier.ujf-grenoble.fr.
  4. 4. Baker H.F. Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge university press, 2005. ISBN: 9780521498777.
  5. 5. Davenport J.H. On the Integration of Algebraic Functions. Berlin-Heidelberg: Springer, 1982.
  6. 6. Trager Barry M. On the Integration of Algebraic Functions. PhD thesis, MIT, 1984.
  7. 7. Bronstein M. Symbolic Integration Tutirial. ISSAC’98, Rostock (August 1998) and Differential Algebra Workshop, Rutgers November 2000, 1998.
  8. 8. Malykh M.D., Sevastianov L.A., Ying Yu. On symbolic integration of algebraic functions // Journal of Symbolic Computation. 2021. V. 104. P. 563–579.
  9. 9. Покровский П.М. О рациональных функциях эллиптического образа // Мат. сб. 1900. V. 21. P. 387–430. http://mi.mathnet.ru/msb6708
  10. 10. Weierstrass K. Math. Werke. Berlin: Mayer Muller, 1902. Vol. 4.
  11. 11. Кочина П.Я. Карл Вейерштрасс (1815–1897). М.: Наука, 1985.
  12. 12. van Hoeij M. An algorithm for computing an integral basis in an algebraic function field // J. of Symbolic Computation. 1994. Vol. 18. P. 353–363.
  13. 13. Malykh M., Ying Yu. Package Weierstrass for Sage, 2021. https://malykhmd.neocities.org
  14. 14. The Sage Developers. Symmetric Functions, 2024. https://doc.sagemath.org
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library