RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

A universal algorithm for discretizing bichromatic two-dimensional graphic codes

PII
10.31857/S0132347424050044-1
DOI
10.31857/S0132347424050044
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
42-53
Abstract
Mathematical foundations and algorithms for recognizing bichromatic two-dimensional graphic codes, regardless of their type (QR codes, DataMatrix, GridMatrix, etc.) are presented. The stages of achieving the result include detecting the code, localizing it within an arbitrary quadrilateral, transforming the quadrilateral to a canonical square, constructing a grid of elements (modules) of the square code, and filling it with a sequence of bits. It is shown that perspective transformation formulas make it possible to transform localized quadrangular regions to canonical squares with an acceptable error level for further processing. A flat grid of square code elements is formed based on the search for extrema of the derivatives of the pixel intensity distribution of the square image along the axes x and y. The algorithm for filling grid cells (code modules) with a sequence of zeros and ones uses information about the average intensity of each such cell. At the end of the paper, the algorithms are tested on a variety of real images of two-dimensional codes, and the limitations of the proposed algorithms are examined.
Keywords
двумерный графический код QR-код DataMatrix распознавание образов преобразование Хафа преобразование перспективы численное дифференцирование бинаризация
Date of publication
15.10.2024
Year of publication
2024
Number of purchasers
0
Views
45

References

  1. 1. Trubitsyn A.A., Shadrin M.V., Serezhin A.A. Localization of image fragments with high frequency intensity oscillation. Journal of Autonomous Intelligence. 2023. V. 6. № 2. P. 1–16.
  2. 2. Трубицын А.А., Шадрин М.В. Обнаружение, локализация и трансформация двумерного графического кода. ГрафиКон 2023: 33-я Международная конференция по компьютерной графике и машинному зрению, 19–21 сентября 2023 г., Институт проблем управления им. В.А. Трапезникова Российской академии наук, г. Москва, Россия. 2023. С. 509–516.
  3. 3. Karrach L., Pivarciova E. Options to use data matrix codes in production engineering. Management Systems in Production Engineering. 2018. V. 26. № 4. P. 231–236.
  4. 4. Yamaguchi et al. Code type determining method and code boundary detecting method. US Patent 2005/O121520 A1. 09.06.2005.
  5. 5. Szentandrási I., Herout A., Dubská M. Fast detection and recognition of QR codes in high-resolution images. SCCG '12: Proceedings of the 28th Spring Conference on Computer Graphics March. 2013. P. 129–136.
  6. 6. Lin J.A., Fuh C.S. 2D barcode image decoding. Mathematical Problems in Engineering. 2013. 2013: 848276.
  7. 7. Heckbert P.S. Fundamentals of texture mapping and image warping [M.S. thesis]. Department of Electrical Engineering, University of California, Berkeley, Calif, USA. 1989.
  8. 8. Gonzalez R, Rafael R. Digital image processing. NY: Pearson. 2018. 1168 p.
  9. 9. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. NY: Dover Publications Inc. 1965. 1046 p.
  10. 10. Otsu N.A. Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Sys. Man. Cyber. 1979. V. 9. № 1. P. 62–66.
  11. 11. Koleda P, Hrčková M. Global and Local Thresholding Techniques for Sawdust Analysis. Acta Facultatis Technicae. 2018. Vol XXIII. No 1. P. 33–42.
  12. 12. Trubitsyn A., Grachev E. Switching median filter for suppressing multi-pixel impulse noise. Computer Optics. 2021. V. 45. № 4. P. 580–588.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library