RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Estimating the complexity of objects in images

PII
10.31857/S0132347424050036-1
DOI
10.31857/S0132347424050036
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 5
Pages
31-41
Abstract
A new method for estimating the complexity of geometric shapes (spots) is proposed, taking into account the internal structure of the spots, and not only their external contour. The task of calculating the degree of complexity of objects is divided into components: segmentation of spots and estimation of the complexity of isolated spots. The new method has a relatively low computational complexity compared to the alternative methods considered in the work. Using the new method, an algorithm based on parallel computing of the CUDA programming language for graphics accelerators (video cards) was created, which further increases the performance of our method. A qualitative and quantitative analysis of existing (alternative) methods has been carried out, their advantages and disadvantages in comparison with our method and with each other have been revealed. The algorithm implemented on the basis of the new method has been tested on both artificial and real digital images.
Keywords
инварианты Hu сложность изображения сжатие изображения контур изображения сегментация изображения выделение контуров классификация изображений статистические моменты изображений вычислительная сложность
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. https://ru.wikipedia.org/wiki/WMAP
  2. 2. https://ru.wikipedia.org/wiki/Планк_ (космическая_обсерватория)
  3. 3. Hu M.K. Visual pattern recognition by moment invariants. IRE Trans. Info. Theory, IT-8:179–187, 1962.
  4. 4. Alastair Florence Frederik Doerr. A micro-xrt image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations. International Journal of Pharmaceutics, 2, 2020.
  5. 5. Kornilov A.S., Safonov I.V. An overview of watershed algorithm implementations in open source libraries. Journal of Imaging, 4(10):123, 2018.
  6. 6. Шайдук А.М., Останин С.А. Количественная оценка сложности контура медицинских изображений // Журнал радиоэлектроники. 2013. № 2.
  7. 7. Ritter H., Rothg¨anger M., Melnik A. Shape complexity estimation using vae. arXiv preprint arXiv:2304.02766., 2023.
  8. 8. Gilchrist J. Parallel data compression with bzip2. Proceedings of the 16th IASTED international conference on parallel and distributed computing and systems, 16:559–564, 2004.
  9. 9. Shannon C.E. A mathematical theory of communication. The Bell system technical journal, 27 (3):379–423, 1948.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library