RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Automatic Image Style Transfer Using an Augmented Style Set

PII
10.31857/S0132347424030029-1
DOI
10.31857/S0132347424030029
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 3
Pages
14-20
Abstract
Image style transfer is an applied task for automatic rendering of the original image (content) in the style of another image (specifying the target style). Traditional image stylization methods provide only a single stylization result. If the user is not satisfied with it due to stylization artifacts, he has to choose a different style. The work proposes a modified stylization algorithm, giving a variety of stylization results, and achieves improved stylization quality by using additional style information from similar styles.
Keywords
генерация изображений обработка изображений нейронные сети
Date of publication
15.06.2024
Year of publication
2024
Number of purchasers
0
Views
46

References

  1. 1. Gooch B., Gooch A. Non-photorealistic rendering. CRC Press, 2001.
  2. 2. Strothotte T., Schlechtweg S. Non-photorealistic computer graphics: modeling, rendering, and animation. Morgan Kaufmann, 2002.
  3. 3. Rosin P., Collomosse J. Image and video-based artistic stylisation. Springer Science & Business Media, 2012. V. 42.
  4. 4. Gatys L.A., Ecker A.S., Bethge M. A neural algorithm of artistic style // arXiv preprint arXiv:1508.06576, 2015.
  5. 5. Huang X., Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization // Proceedings of the IEEE international conference on computer vision. 2017. P. 1501–1510.
  6. 6. Li Y. et al. Universal style transfer via feature transforms // Advances in neural information processing systems. 2017. V. 30.
  7. 7. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition // arXiv preprint arXiv:1409.1556, 2014.
  8. 8. Deng J. et al. Imagenet: A large-scale hierarchical image database // 2009 IEEE conference on computer vision and pattern recognition. IEEE. 2009. P. 248–255.
  9. 9. Phillips F., Mackintosh B. Wiki Art Gallery, Inc.: A case for critical thinking // Issues in Accounting Education. 2011. V. 26. № 3. P. 593–608.
  10. 10. Florea C. et al. Pandora: Description of a painting database for art movement recognition with baselines and perspectives // 2016 24th European Signal Processing Conference (EUSIPCO). IEEE. 2016. P. 918–922.
  11. 11. Buzuloiu V. et al. Adaptive-neighborhood histogram equalization of color images // Journal of Electronic Imaging. 2001. V. 10. № 2. P. 445–459.
  12. 12. de Villiers J.P. A comparison of image sharpness metrics and real-time sharpening methods with GPU implementations // Proceedings of the 7th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa. 2010. P. 53–62.
  13. 13. Hassen R., Wang Z., Salama M.M.A. Image sharpness assessment based on local phase coherence // IEEE Transactions on Image Processing. 2013. V. 22. № 7. P. 2798–2810.
  14. 14. Sanakoyeu A. et al. A style-aware content loss for real-time hd style transfer // Proceedings of the European conference on computer vision (ECCV). 2018. P. 698–714.
  15. 15. Huang X., Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization // Proceedings of the IEEE international conference on computer vision. 2017. P. 1501–1510.
  16. 16. Li Y. et al. Universal style transfer via feature transforms // Advances in neural information processing systems. 2017. V. 30.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library