RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Primitive elements of free non-associative algebras over finite fields

PII
10.31857/S0132347424020115-1
DOI
10.31857/S0132347424020115
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
84-92
Abstract
The representation of elements of free non-associative algebras as a set of multidimensional tables of coefficients is defined. An operation for finding partial derivatives for elements of free non-associative algebras in the same form is considered. Using this representation, a criterion of primitivity for elements of lengths 2 and 3 in terms of matrix ranks, as well as a primitivity test for elements of arbitrary length, is derived. This test makes it possible to estimate the number of primitive elements in free non-associative algebras with two generators over a finite field. The proposed representation allows us to optimize algorithms for symbolic computations with primitive elements. Using these algorithms, we find the number of primitive elements of length 4 in a free non-associative algebra of rank 2 over a finite field.
Keywords
шрайерово многообразие линейных алгебр свободные неассоциативные алгебры примитивные элементы свободных алгебр свободное дифференциальное исчисление в свободных алгебрах
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
31

References

  1. 1. Artamonov V.A., Klimakov A.V., Mikhalev A.A., Mikhalev A.V. Primitive and almost-primitive elements of free algebras of Schreier varieties, Fundam // Prikl. Mat. 2016. V. 21. № 2. P. 3–35.
  2. 2. Kurosh A.G. Free non-associative algebras and free products of algebras // Mat. Sb. 1947. V. 20. P. 239–262.
  3. 3. Maisuradze M.V. Software implementation of algorithms for working with primitive elements in free nonassociative algebras // Intellekt. Sist. Teor. Prilozh. 2021. V. 25. № 4. P. 170–175.
  4. 4. Mikhalev A.A., Mikhalev A.V., Chepovskii A.A., Shampan’er K. Primitive elements of free associative algebras // Fundam. Prikl. Mat. 2007. V. 13. № 5. P. 171–192.
  5. 5. Chepovskii A.A. Primitive elements of algebras of Schreier varieties, Cand. Sci. (Phys.-Math.) Dissertation, Moscow: Mosk. Gos. Univ., 2011.
  6. 6. Chepovskii A.A. Number of primitive elements of lengths 1 and 2 in free non-associative algebras over a finite field // Vestn. Novosib. Gos. Univ. Ser.: Mat., Mekh., Inf. 2011. V. 11. P. 119–122.
  7. 7. Mikhalev A.A., Umirbaev U.U., Yu J.-T. Automorphic orbits of elements of free non-associative algebras, J. Algebra. 2001. P. 198–223.
  8. 8. Mikhalev A.A., Shpilrain V., Yu J.-T. Combinatorial Methods: Free Groups, Polynomials, and Free Algebras, New York: Springer, 2004.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library