RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

On calculating partial sums of multiple numerical series by methods of Computer Algebra

PII
10.31857/S0132347424020094-1
DOI
10.31857/S0132347424020094
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
74-78
Abstract
A method to calculate partial sums of some multiple numerical series arising when searching for the resultant of a polynomial and an entire function is proposed. One can apply a symbolic algorithm that uses recurrent Newton formulas to find power sums of roots included in this formula without finding the very roots of the system. The algorithm that implements the proposed approach to calculate partial sums of multiple numerical series is implemented in Maple. Examples of using this algorithm to find partial sums of some classes of multiple numerical series are given.
Keywords
кратные числовые ряды степенные суммы корней рекуррентные формулы Ньютона методы компьютерной алгебры
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Aizenberg L.A. On one formula of generalized logarithmic residue and solution of the system of nonlinear equations, Dokl. Akad. Nauk SSSR (Proc. of the USSR Academy of Sciences). 1977. V. 234. № 3. P. 505–508.
  2. 2. Aizenberg L.A., Yuzhakov A.P. Integral’nye predstavleniya i vychety v mnogomernom kompleksnom analize (Integral Representations and Residues in Multidimensional Complex Analysis), Novosibirsk: Nauka, 1979.
  3. 3. Bykov V.I., Kytmanov A.M., Lazman M.Z. Elimination methods in polynomial computer algebra, Kluwer Academic Publishers, Dodrecht-Boston-Basel, 1998.
  4. 4. Tsikh A.K. Multidimensional residues and their applications, AMS, Providence, 1992.
  5. 5. Bykov V.I., Tsybenova S.B. Nelineinye modeli khimicheskoi kinetiki (Nonlinear Models of Chemical Kinetics), Moscow: KRASAND, 2011.
  6. 6. Myshkina E.K. Some examples of finding the sums of multiple series // J. Siberian Federal Univ. Math. Phys. 2014. V. 7. № 4. P. 515–529.
  7. 7. Kytmanov A.A., Kytmanov A.M., Myshkina E.K. Finding Residue Integrals for Systems of Non-algebraic Equations in Cn // Journal of Symbolic Computation. 2015. V. 66. P. 98–110.
  8. 8. Kytmanov A.A., Kytmanov A.M., Myshkina E.K. Residue integrals and Waring’s formulas for algebraic or even transcendental systems // Complex Variables and Elliptic Equations. 2019. V. 64. № 1. P. 93–111.
  9. 9. Kytmanov A.M., Myshkina E.K. On Some Approach for Finding the Resultant of Two Entire Functions // J. Siberian Federal Univ. Math. Phys. 2019. V. 12. № 4. P. 434–438.
  10. 10. Kytmanov A.M., Myshkina E.K. On Finding the Resultant of Two Entire Functions // Probl. Anal. Issues Anal. 2020. V. 9. № 3. P. 119–130.
  11. 11. Kytmanov A.A. Analogues of recurrent Newton formulas, Russian Math. 2009. V. 53. P. 34–44.
  12. 12. Kytmanov A.A. An algorithm for calculating power sims of roots for a class of systems of nonlinear equations // Programming and Computer Software. 2010. V. 36. № 2. P. 103–110.
  13. 13. Bryuno A.D., Batkhin A.B. Algorithms and programs for calculating the roots of polynomial of one or two variables // Programming and Computer Software. 2021. V. 47. № 5. P. 353–373.
  14. 14. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integraly i ryady. Elementarnye funktsii (Integrals and Series. Elementary Functions), Moscow: Nauka, Gl. red. fiz.-mat. lit, 1981.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library