RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Symbolic studies of Maxwell’s equations in space-time algebra formalism

PII
10.31857/S0132347424020078-1
DOI
10.31857/S0132347424020078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
66-73
Abstract
Different implementations of Clifford algebra: spinors, quaternions, and geometric algebra, are used to describe physical and technical systems. The geometric algebra formalism is a relatively new approach, destined to be used primarily by engineers and applied researchers. In a number of works, the authors examined the implementation of the geometric algebra formalism for computer algebra systems. In this article, the authors extend elliptic geometric algebra to hyperbolic space-time algebra. The results are illustrated by different representations of Maxwell’s equations. Using a computer algebra system, Maxwell’s vacuum equations in the space-time algebra representation are converted to Maxwell’s equations in vector formalism. In addition to practical application, the authors would like to draw attention to the didactic significance of these studies.
Keywords
геометрическая алгебра алгебра Клиффорда система компьютерной алгебры SymPy Galgebra
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
41

References

  1. 1. Геворкян М.Н., Королькова А.В., Кулябов Д.С. Реализация геометрической алгебры в системах символьных вычислений // Программирование. 2023. № 1. С. 48–55.
  2. 2. Геворкян М.Н., Демидова А.В., Велиева Т.Р. Аналитико-численная реализация алгебры поливекторов на языке Julia // Программирование. 2022. № 1. С. 54–64.
  3. 3. Велиева Т.Р., Геворкян М.Н., Демидова А.В. Аппарат геометрической алгебры и кватернионов в системах символьных вычислений для описания вращений в евклидовом пространстве // Журнал вычислительной математики и математической физики. 2023. Т. 63. № 1. С. 31–42.
  4. 4. Королькова А.В., Геворкян М.Н., Кулябов Д.С., Севастьянов Л.А. Средства компьютерной алгебры для геометризации уравнений Максвелла // Программирование. 2023. Т. 49. № 4. С. 33–38.
  5. 5. Kulyabov D. S. Using two Types of Computer Algebra Systems to Solve Maxwell Optics Problems // Programming and Computer Software. 2016. V. 42. № 2. P. 77–83. arXiv: 1605.00832.
  6. 6. Kulyabov D.S., Korolkova A.V., Sevastianov L.A. et al. Algorithm for Lens Calculations in the Geometrized Maxwell Theory // Saratov Fall Meeting 2017: Laser Physics and Photonics XVIII; and Computational Biophysics and Analysis of Biomedical Data IV / Ed. by Vladimir L. Derbov, Dmitry E. Postnov. Vol. 10717 of Progress in Biomedical Optics and Imaging – Proceedings of SPIE. Saratov: SPIE, 2018. 4. P. 107170Y.1–6. arXiv : 1806.01643.
  7. 7. Grassmann H.G. Die Mechanik nach den Principien der Ausdehnungslehre // Mathematische Annalen. 1877. 6. Bd. 12, H. 2. S. 222–240.
  8. 8. Kuipers J.B. Quaternions And Rotation Sequences. Princeton, New Jersey: Princeton University Press, 2002. 400 p.
  9. 9. Clifford W.K. Applications of Grassmann’s Extensive Algebra // American Journal of Mathematics. 1878. V. 1. № 4. P. 350–358.
  10. 10. GAlgebra — Symbolic Geometric Algebra/ Calculus package for SymPy. 2023. https://galgebra.readthedocs.io/en/latest/index.html.
  11. 11. Velieva T.R., Gevorkyan M.N., Demidova A.V. et al. Geometric Algebra and Quaternion Techniques in Computer Algebra Systems for Describing Rotations in Eucledean Space // Computational Mathematics and Mathematical Physics. 2023. V. 63. № 1. P. 29–39.
  12. 12. Sandon D. Symbolic Computation with Python and SymPy. 2021. V. 1. 580 p.
  13. 13. Sandon D. Symbolic Computation with Python and SymPy. 2021. V. 2. 429 p.
  14. 14. The international system of units (SI) / Ed. by David B. Newell, Eite Tiesinga. NIST Special Publication 330. National Institute of Standards and Technology, 2019. Aug. 122 p.
  15. 15. Dorst L., Fontijne D., Mann S. Geometric algebra for computer science (with errata). The Morgan Kaufmann Series in Computer Graphics. 1 edition. Morgan Kaufmann, 2007.
  16. 16. de Sabbata V., Datta B.K. Geometric Algebra and Applications to Physics. Taylor & Francis, 2006. 12. 184 p.
  17. 17. Rosn A. Geometric Multivector Analysis. Springer International Publishing, 2019. 465 p.
  18. 18. Rodrigues Jr W.A., de Oliveira E.C. The Many Faces of Maxwell, Dirac and Einstein Equations. Springer International Publishing, 2016. V. 922 of Lecture Notes in Physics. 587 p.
  19. 19. Doran C., Lasenby A. Geometric Algebra for Physicists. Cambridge University Press, 2003. May. 578 p.
  20. 20. Chisolm E. Geometric Algebra. 2012. arXiv : 1205.5935.
  21. 21. Lasenby A., Doran C., Arcaute E. Applications of Geometric Algebra in Electromagnetism, Quantum Theory and Gravity // Clifford Algebras / Ed. by R. Abamowicz. Birkhuser Boston, 2004. Vol. 34 of Progress in Mathematical Physics. 467–489 p.
  22. 22. Toomey D. Learning Jupyter. Packt Publishing Ltd., 2016. 305 p.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library