RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Symbolic-numerical implementation of the model of adiabatic guided modes for two-dimensional irregular waveguides

PII
10.31857/S0132347424020066-1
DOI
10.31857/S0132347424020066
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
45-50
Abstract
In this work, a symbolic-numerical solution of Maxwell’s equations is constructed, describing the guided modes of a two-dimensional smoothly irregular waveguide in the zeroth approximation of the model of adiabatic waveguide modes. The system of linear algebraic equations obtained in this approximation is solved symbolically. The dispersion relation is solved numerically using the parameter continuation method.
Keywords
символьное решение линейных уравнений символьное решение дифференциальных уравнений адиабатические волноводные моды направляемые моды плавно-нерегулярный волновод
Date of publication
15.04.2024
Year of publication
2024
Number of purchasers
0
Views
31

References

  1. 1. Sevastianov L.A., Egorov A.A. Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothlyirregular integrated structures // Optics and Spectroscopy. 2008. V. 105. № 4. P. 576–584.
  2. 2. Egorov A.A., Sevastianov L.A. Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide // Quantum Electronics. 2009. V. 39. № 6. P. 566–574.
  3. 3. Egorov A.A., Lovetskiy K.P., Sevastianov A.L., Sevastianov L.A. Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation // Quantum Electronics. 2010. V. 40. № 9. P. 830–836.
  4. 4. Babich V.M., Buldyrev V.S. Asimptotic Methods in Short-Wave Diffraction Problems. Method of Reference Problems, Moscow: Nauka, 1972.
  5. 5. Divakov D.V., Sevastianov A.L. The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple // Lecture Notes in Computer Science. 2019. V. 11661. P. 107–121.
  6. 6. Adams M.J. An Introduction to Optical Waveguides. Wiley, New York (1981).
  7. 7. Mathematics-based software and services for education, engineering, and research https://www.maplesoft.com/
  8. 8. Divakov D.V., Tyutyunnik A.A. Symbolic investigation of the spectral characteristics of guided modes in smoothly irregular waveguides // Program. Comput. Software. 2022. V. 48. № 2. P. 80–89.
  9. 9. Kuznetsov E.B., Shalashilin V.I. Solution of differential-algebraic equations using the parameter continuation method // Differ. Uravn. 1999. V. 35. № 3. P. 379–387.
  10. 10. Divakov D.V., Tyutyunnik A.A. Symbolic-numerical modeling of adiabatic waveguide mode in a smooth waveguide transition // Comput. Math. Math. Phys. 2023. V. 63. № 1. P. 95–105.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library