RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Computer-algebraic approach to first differential approximation: Van der Pol oscillator

PII
10.31857/S0132347424020022-1
DOI
10.31857/S0132347424020022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
7-12
Abstract
First differential approximation has been used to analyze various numerical methods for solving systems of ordinary differential equations. This has made it possible to estimate the stiffness of the ODE system that models the oscillations of the Van der Pol oscillator and the error of the method as well as to propose simple criteria for choosing a calculation step. The presented methods allow one to perform efficient calculations using computer algebra systems.
Keywords
численные методы решения ОДУ первое дифференциальное приближение компьютерная алгебра базисы Грёбнера
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
16

References

  1. 1. Яненко Н.Н., Шокин Ю.И. О первом дифференциальном приближении разностных схем для гиперболических систем уравнений // Сиб. матем. журн. 1969. Т. 10. № 5. C. 1173–1187. DOI: 10.1007/BF00971662
  2. 2. Блинков Ю.А., Гердт В.П., Маринов К.Б. Дискретизация квазилинейных эволюционных уравнений методами компьютерной алгебры // Программирование. 2017. № 2. C. 28–34.
  3. 3. Блинков Ю.А., Ребрина А.Ю. Исследования разностных схем для двумерных уравнений Навье–Стокса алгоритмами компьютерной алгебры // Программирование. 2023. № 1. C. 32–37.
  4. 4. Блинкова А.Ю., Малых М.Д., Севастьянов Л.А. О дифференциальных приближениях разностных схем // Изв. Сарат. ун-та. Нов. cер. Сер. Математика. Механика. Информатика. 2021. Т. 21. № 4. C. 472–488. DOI: 10.18500/1816-9791-2021-21-4-472-488
  5. 5. Kutta M. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeitschrift für Mathematik und Physik. 1901. Vol. 46. P. 435–453.
  6. 6. Bashforth F. An Attempt to test the Theories of Capillary Action by comparing the theoretical and measured forms of drops of fluid. With an explanation of the method of integration employed in constructing the tables which give the theoretical forms of such drops, by J. C. Adams, Cambridge. 1883.
  7. 7. Moulton F. R. New methods in exterior ballistics, University of Chicago Press. 1926.
  8. 8. van der Pol B. On “Relaxation-Oscillations”. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1926. N. 2. P. 978–89992. DOI: 10.1080/14786442608564127
  9. 9. Kolchin E. R. Differential Algebra and Algebraic Groups. Academic Press, New York, 1973. 446 P.
  10. 10. Buchberger B. Gröbner bases: an Buchberger algorithmic method in polynomial ideal theory. Recent Trends in Multidimensional System Theory / Ed. by N. K. Bose. V. 6. 1985. P. 184–232.
  11. 11. Duffing G. Brzwungene Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeutung, Braunschweig, 1918.
  12. 12. Curtiss C.F., Hirschfelder J.О. Integration of stiff equations. Proceedings of the National Academy of Sciences of the USA. 1952. V. 38. N. 3. P. 235–243. DOI: 10.1073/pnas.38.3.235
  13. 13. Crank J., Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc. Camb. Phil. Soc. 1947. V. 43. N. 1. P. 50–67. DOI:10.1017/S0305004100023197
  14. 14. Dorman J.R., Prince P.J. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics. 1980. V. 6. N. 1. P. 19–26. DOI: 10.1016/0771-050X(80)90013-3
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library