RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Interactive calculation of light refraction and caustics using a graphics processor

PII
10.31857/S0132347424010086-1
DOI
10.31857/S0132347424010086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
100-112
Abstract
While modern rendering systems are effective at modeling complex light paths in complex environments, rendering refractive caustics still takes a long time. Caustics are light patterns that occur when light is refracted and reflected from a surface. Due to the sharp density distribution of these mirror events, rendering algorithms mainly rely on direct sampling of the bidirectional scattering distribution function on these surfaces to plot trajectories. This requires many calculations. Photonic maps are also used. However, there are problems limiting the applicability of caustic maps. Since each photon in the photon buffer must be processed, therefore, one has to choose between a strongly underestimated caustic sampling and a large decrease in speed in order to use a sufficient number of photons for caustics in order to obtain high-quality images. Complex mirror interactions cause oversampling in bright focal areas, while other areas of the caustic map remain under-selected and noisy. At the same time, speed takes precedence over realism in most interactive applications. However, the desire to improve the quality of graphics prompted the development of various fast approximations for realistic lighting. This paper presents a combined method for visualizing refraction of light and caustics using reverse integration for illumination and direct integration for viewing rays. An approach is used for simultaneous propagation of light and for tracking rays in volume and, therefore, it does not require storing data of an intermediate volume of illumination. In the implementation of the method, the distance between the light planes is set to one voxel, which provides at least one sample per voxel for all orientations. The method does not use preliminary calculations; all rendering parameters can be changed interactively. As a result, using the proposed method, it is possible to create plausible approximations of complex phenomena such as refractions and caustics. The effect of refraction on the shadow is shown. Complex light patterns are demonstrated due to the curved geometry of the objects. The visualization results show the importance of refraction for the appearance of transparent objects. For example, distortions caused by refraction and refraction at the interface between media. The difference in refractive indices between individual media causes a complex interaction between light and shadow areas. It is shown how refraction and caustics improve the visualization of functionally defined objects by providing additional information about shape and location.
Keywords
функционально заданные объекты функции возмущения освещение преломление отражение тени каустика графический процессор
Date of publication
15.02.2024
Year of publication
2024
Number of purchasers
0
Views
44

References

  1. 1. Wang X., Zhang R. Rendering Transparent Objects with Caustics using Real-Time Ray Tracing //March 2021Computers & Graphics. 2021. V. 96. № 3. DOI:10.1016/j.cag.2021.03.003
  2. 2. Komarov E., Zhdanov D., Zhdanov A. Rendering the Real-Time Caustics with DirectX Raytracing // 31th International Conference on Computer Graphics and Vision. (Graphicon -2021). C. 36–47. doi:10.20948/graphicon-2021-3027-36-47
  3. 3. Grittmann P., Pérard-Gayot A., Slusallek P., Krivanek J. Efficient caustic rendering with lightweight photon mapping // Computer Graphics Forum. 2018. V. 37. № 4. P. 133-142. DOI:10.1111/cgf.13481
  4. 4. Muller T., Gross M., Novak J. Practical path guiding for efficient light-transport simulation // Computer Graphics Forum. 2017. V. 36. № 4. P. 91–100. DOI:10.1111/cgf.13227
  5. 5. Rodriguez S., Leimkuhler T., Prakash S., Wyman C., Shirley P., Drettakis G. Glossy Probe Reprojection for Interactive Global Illumination December 2020ACM Transactions on Graphics 39(6) P. 1-16. doi:10.1145/3414685.3417823
  6. 6. Kopanas G., Leimkuhler T., Rainer G., Jambon C., Drettakis G. Neural Point Catacaustics for Novel-View Synthesis of Reflections // ACM Transactions on Graphics. 2022. V. 41. № 6. P. 1–15. doi:10.1145/3550454.3555497
  7. 7. Вяткин С.И., Долговесов Б.С. Высокореалистичная визуализация каустик и шероховатых поверхностей // Программирование. 2022. № 5. С. 27–36. DOI: 10.31857/S0132347422050065
  8. 8. Haber J., Magnor M., Seidel H.P. Physically-based Simulation of Twilight Phenomena // ACM Transactions on Graphics. V. 24. № 4. 2005. P. 1353–1373. DOI:10.1145/1095878.1095884
  9. 9. Вяткин С.И., Долговесов Б.С. Физически корректная визуализация функционально заданных объектов // Автометрия. 2022. Т. 58. № 3. С. 98–105. doi: 10.15372/AUT20220311
  10. 10. Вяткин С.И., Долговесов Б.С. Метод визуализации мультиобъемных данных и функционально заданных поверхностей с применением графических процессоров // Автометрия. 2021. Т. 57. № 2. С. 32–40. DOI: 10.15372/AUT20210204
  11. 11. Вяткин С.И. Метод бинарного поиска элементов изображения функционально заданных объектов с применением графических акселераторов // Автометрия. Т. 50. № 6. 2014. С. 89–96.
  12. 12. Galtier M., Blanco S., Caliot C. et al. Integral Formulation of Null Collision Monte Carlo Algorithms // Journal of Quantitative Spectroscopy and Radiative Transfer. 2013. V. 125. P. 57–68. DOI: 10.1016/j.jqsrt.2013.04.001
  13. 13. Jensen H. W., Marschner S. R., Levoy M. A practical model for subsurface light transport // SIGGRAPH ‘01 In: Proceedings of the 28th annual conference on Computer graphics and interactive techniques. ACM. New York, August, 2001, P. 511–518. doi:10.1145/383259.383319
  14. 14. Loube G., Zeltner T., Holzschuch N. Slope-space integrals for specular next event estimation// ACM Transactions on Graphics. 2020. V. 39. № 6. P. 1–13. DOI:10.1145/3414685.3417811
  15. 15. Deng X., Jiao S., Bitterli B., Jarosz W. Photon surfaces for robust, unbiased volumetric density estimation”, July 2019ACM Transactions on Graphics. 2019. V. 38, № 4. P. 1–12. DOI:10.1145/3306346.3323041
  16. 16. Bitterli B., Jarosz W. Beyond points and beams: Higher dimensional photon samples for volumetric light transport //ACM Transactions on Graphics (TOG). 2017. Т. 36. №. 4. P. 1-12.
  17. 17. Фролов В.А., Волобой А.Г., Ершов С.В., Галактионов В.А. Современное состояние методов расчета глобальной освещенности в задачах реалистичной компьютерной графики // Труды Института системного программирования РАН. 2021. Т. 33. № 2. С. 7–48. doi: https://doi.org/10.15514/ISPRAS-2021-33 (2)-1
  18. 18. Вяткин С.И., Долговесов Б.С. Функционально заданные модели для аддитивного производства// Исследования. Инновации. Практика. 2022. № 4(4). С. 16–25. DOI: 10.18411/iip -08-2022-04
  19. 19. Lavoue G., Bonneel N., Farrugia J.-P., Soler C. Perceptual quality of BRDF approximations: Dataset and metrics // Comp. Graph. Forum. 2021. V. 40. № 2. P. 327-338. DOI: 10.1111/cgf.142636.
  20. 20. Вяткин С.И., Долговесов Б.С. Сглаживание функционально заданных объектов в сценах с глобальной освещенностью // Journal of Advanced Research in Technical Science. 2022. № 30. P. 96–103. DOI: 10.26160/2474-5901-2022-30-96-103.
  21. 21. Schlick C. A Customizable Reflectance Model for Everyday Rendering // In proceedings of four Eurographics Workshop on Rendering. 1993. P. 73–84. Corpus ID: 18967314
  22. 22. Jensen H.W. Realistic image synthesis using photon mapping. Publisher: A. K. Peters, Ltd.63 South Avenue Natick, MA United States. 2001. 181 p. ISBN:978-1-56881-147-5
  23. 23. Kang C-M., Wang L., Xu Y., Meng X. A survey of photon mapping state-of-the-art research and future challenges // Frontiers of Information Technology & Electronic Engineering. 2016. V. 17. № 3. P. 185–199. DOI:10.1631/FITEE.1500251
  24. 24. Fabianowski B., Dingliana J. Interactive global photon mapping // Computer Graphics Forum. 2009. V. 28. № 4. P. 1151–1159. http://dx.doi.org/10.1111/j.1467-8659.2009.01492.x
  25. 25. Pediredla A., Chalmiani Y.K., Scopelliti M.G., Chamanzar M., Narasimhan S. Path tracing estimators for refractive radiative transfer // ACM Transactions on Graphics. 2020. V. 39. № 6. P. 1–15. doi:10.1145/3414685.3417793
  26. 26. Davidovic T., Krivanek J., Hasan M., Slussalek P. Progressive light transport simulation on the GPU: survey and improvements // ACM Trans. Graph. 2014. V. 33. № 3. P. 1–19. http://dx.doi.org/10.1145/2602144
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library