RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

ROBUST ALGEBRAIC CONNECTIVITY

PII
10.31857/S0132347423060067-1
DOI
10.31857/S0132347423060067
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 6
Pages
49-59
Abstract
The second smallest eigenvalue of a graph Laplacian is known as algebraic connectivity of the graph. This value shows how much this graph is connected. But this metric does not take into attention possible changes in graph. Note, that deletion of even one node or edge can lead the graph to be disconnected. This work is devoted to development of a metric that should describe robustness of the graph to such changes. All proposed metrics are based on algebraic connectivity. Besides, we provide generalization of some famous optimization methods for our robust modifications of algebraic connectivity. Moreover, this work contains some numerical experiments demonstrated efficiency of proposed approaches.
Keywords
Date of publication
01.11.2023
Year of publication
2023
Number of purchasers
0
Views
74

References

  1. 1. Fiedler Miroslav. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal. 1973. V. 23. P. 298–305. .https://doi.org/10.21136/CMJ.1973.101168
  2. 2. Fallat Shaun, Kirkland Steve, Pati Sukanta. On graphs with algebraic connectivity equal to minimum edge density. Linear Algebra and its Applications. 2003. V. 373. P. 31–50. https://doi.org/10.1016/S0024-3795 (02)00538-4
  3. 3. Ghosh Arpita, Boyd Stephen. Growing Well-connected Graphs. Proceedings of the IEEE Conference on Decision and Control. 2007. P. 6605–6611. https://doi.org/10.1109/CDC.2006.377282.
  4. 4. Kirkland Steve, Neumann M. On Algebraic Connectivity as a Function of an Edge Weight. Linear and Multilinear Algebra. 2004. V. 052. P. 17–33. https://doi.org/10.1080/0308108031000119663
  5. 5. Feddema John, Byrne Raymond, Abdallah Chaouki. Algebraic connectivity and graph robustness. 2005.https://doi.org/10.2172/973665
  6. 6. Goyal Sanjeev, Vigier Adrien. Robust Networks. 2011.
  7. 7. Bala Venkatesh, Goyal, Sanjeev. A Strategic Analysis of Network Reliability. Review of Economic Design. 2000. V. 5. P. 205–228. https://doi.org/10.1007/s100580000019
  8. 8. Ghayoori A., Leon-Garcia A., “Robust network design,” 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 2013. P. 2409–2414. https://doi.org/10.1109/ICC.2013.6654892.
  9. 9. Lipovetsky Stan. Matrix Analysis, 2nd edition, Roger A. Horn and Charles R. Johnson, book review, Technometrics. 2013. V. 55. № 3. 2013, 376. Technometrics. V. 55. P. 376. book review
  10. 10. Gregoire Spiers, Peng Wei, Dengfeng Sun, Algebraic Connectivity Optimization of Large Scale and Directed Air Transportation Network, IFAC Proceedings Volumes, Volume 45, Issue 24, 2012, Pages 103-109, ISSN 1474-6670, ISBN 9783902823137, https://doi.org/10.3182/20120912-3-BG-2031.00019
  11. 11. Zhidong He. Optimization of convergence rate via algebraic connectivity. 2019.
  12. 12. Orlowski S., Wessaly R., Pioro M., Tomaszewski A. SNDlib 1.0–Survivable network design library. Networks: An International Journal 55.3. 2010. P. 276–286.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library