RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

A PACKAGE OF PROCEDURES AND FUNCTIONS FOR CONSTRUCTIONS AND INVERSION OF ANALYTIC MAPPINGS WITH UNIT JACOBIAN

PII
10.31857/S0132347423010077-1
DOI
10.31857/S0132347423010077
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
61-68
Abstract
The set of polynomial mappings of n-dimensional complex space into itself the Jacobian matrix of which has a constant nonzero determinant is known to be very vast in any dimension that exceeds one. The well-known Jacobian conjecture states that any such mapping is polynomially invertible. Even though the computation of the determinant of the Jacobian matrix is very well supported in modern computer algebra systems, the algorithmic inversion of a polynomial mapping is still a problem of considerable computational complexity. In this paper, we present a Mathematica package JC that can be used for construction and inversion of polynomial mappings and more general analytic mappings with the unit determinant of the Jacobian matrix. The package includes functions that allow one to algorithmically construct these mappings for a given dimension of the space of variables and a given degree of mapping components. The package, together with a library of datasets for testing it and results of computational experiments, is available for free public use at https://www.researchgate.net/publication/358409332_JC_Package_and_Datasets.
Keywords
Date of publication
17.09.2025
Year of publication
2025
Number of purchasers
0
Views
18

References

  1. 1. Абрамов С.А. Поиск рациональных решений дифференциальных и разностных систем с помощью формальных рядов // Программирование. 2015. № 2. С. 69–80.
  2. 2. Drukowski L.M. An effective approach to Keller’s Jacobian Conjecture // Math. Ann. 1983. № 264. P. 303–313.
  3. 3. van den Essen A. Polynomial Automorphisms and the Jacobian Conjecture. Birkhäuser, 2000.
  4. 4. van den Essen A. and Washburn S. The Jacobian Conjecture for symmetric Jacobian matrices // Journal of Pure and Applied Algebra. 2004. № 189. P. 123–133.
  5. 5. Fernandes F. A new class of non-injective polynomial local diffeomorphisms on the plane // Journal of Mathematical Analysis and Applications. 2022. № 507. 125736.
  6. 6. Grigoriev D. and Radchenko D. On a tropical version of the Jacobian Conjecture // Journal of Symbolic Computation. 2022. № 109. P. 399–403.
  7. 7. Keller O.H. Ganze Cremona-Transformationen // Monatshefte für Mathematik und Physik. 1939. № 47. P. 299–306.
  8. 8. Peretz R. The 2-dimensional Jacobian Conjecture: A computational approach // Algorithmic Algebraic Combinatorics and Gröbner Bases. 2009. P. 151–203.
  9. 9. Stepanova M.A. Jacobian conjecture for mappings of a special type in // Journal of Siberian Federal University. Mathematics & Physics. 2018. № 11(2.3). P. 776–780.
  10. 10. Truong T.T. Some new theoretical and computational results around the Jacobian Conjecture // International Journal of Mathematics. 2020. № 31(4.1). 2050050.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library