RAS MathematicsПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

ON INTEGRABILITY OF TWO- AND THREE-DIMENSIONAL DYNAMICAL SYSTEMS WITH A QUADRATIC RIGHT-HAND SIDE

PII
S3034584725020031-1
DOI
10.7868/S3034584725020031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
20-26
Abstract
A heuristic method that allows us to determine in advance the cases of integrability of autonomous dynamical systems with a polynomial right-hand side is used. The capabilities of this method are demonstrated using examples of two- and three-dimensional dynamical systems with a quadratic nonlinearity. A significant achievement compared to previous works is the ability to study systems of a general type without resonances in the linear parts, which is achieved by generalizing the results of resonance cases. Thus, it becomes possible to use the obtained results when working with dynamical models of real systems.
Keywords
обыкновенные дифференциальные уравнения степенная геометрия интегрируемость резонансная нормальная форма компьютерная алгебра
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
70

References

  1. 1. Брюно А.Д. Аналитическая форма дифференциальных уравнений (I, II) // Труды московского мат. общества. 1971. Т. 25. С. 119–262; 1972. Т. 26. С. 199–239.
  2. 2. Bruno A.D. Analytical form of differential equations (I, II) // Trans. Moscow Math. Soc. 1971, vol. 25, pp. 131–288; 1972, vol. 26, pp. 199–239.
  3. 3. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 254 с.
  4. 4. Bruno A.D. Local Methods in Nonlinear Differential Equations. Berlin: Springer-Verlag, 1989. 348 p.
  5. 5. Брюно А.Д., Еднерал В.Ф. Нормальная форма и интегрируемость систем ОДУ // Программирование. 2006.№3. С. 22–29.
  6. 6. Bruno A.D., Edneral V.F. Normal forms and integrability of ODE systems // Programming and Computer Software, 2006, vol. 32, no. 3, pp. 139–144.
  7. 7. Edneral V.F. Integrable Cases of the Polynomial Lienard-type Equation with Resonance in the Linear Part // Mathematics in Computer Science. 2023. Vol. 17(19). DOI: 10.1007/s11786-023-00567-6.
  8. 8. Bruno A.D., Edneral V.F. Integration of a degenerate system of ODEs // Programming and Computer Software. 2024. Vol. 50. No. 2. Р. 128–137.
  9. 9. Rand R.H. Lecture Notes on Nonlinear Vibrations // Ithaca NY: Cornell University, 2012. 118 p.
  10. 10. Lienard A. Etude des oscillations entretenues // Revue generale de l’electricite. 1928. Vol. 23. Р. 901–912 and 946–954.
  11. 11. Edneral V.F., Khanin R. Application of the resonant normal form to high-order nonlinear odes using MATHEMATICA // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Vol. 502. No. 2–3. Р. 643–645.
  12. 12. Bomze I.M. Lotka–Volterra equation and replicator dynamics: a two-dimensional classification // Biological Cybernetics. 1983. Vol. 48. Р. 201–211.
  13. 13. Romanovski V.G., Shafer D.S. The Center and Cyclicity Problems: A Computational Algebra Approach // Birkhuser, Boston, 2009. 330 p.
  14. 14. Edneral V.F. Integrable Cases of the Bautin System // MCS, 2025. In printing.
  15. 15. Леванов А.В., Антипенко Э.Е. Введение в химическую кинетику. М.: МГУ, 2006. 51 с.
  16. 16. Levanov A.V., Antipenko E.E. Introduction to chemical kinetics. M.: Moscow State University, 2006, 51 p.
  17. 17. Корзухин М.Д., Жаботинский А.М. Математическое моделирование химических и экологических автоколебательных систем. М.: Наука, 1965.
  18. 18. Korzukhin M.D., Zhabotinsky A.M. Mathematical modeling of chemical and environmental selfoscillating systems. M.: Nauka, 1965 (in Russ.).
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library