- PII
- S3034584725020031-1
- DOI
- 10.7868/S3034584725020031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 2
- Pages
- 20-26
- Abstract
- A heuristic method that allows us to determine in advance the cases of integrability of autonomous dynamical systems with a polynomial right-hand side is used. The capabilities of this method are demonstrated using examples of two- and three-dimensional dynamical systems with a quadratic nonlinearity. A significant achievement compared to previous works is the ability to study systems of a general type without resonances in the linear parts, which is achieved by generalizing the results of resonance cases. Thus, it becomes possible to use the obtained results when working with dynamical models of real systems.
- Keywords
- обыкновенные дифференциальные уравнения степенная геометрия интегрируемость резонансная нормальная форма компьютерная алгебра
- Date of publication
- 01.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 70
References
- 1. Брюно А.Д. Аналитическая форма дифференциальных уравнений (I, II) // Труды московского мат. общества. 1971. Т. 25. С. 119–262; 1972. Т. 26. С. 199–239.
- 2. Bruno A.D. Analytical form of differential equations (I, II) // Trans. Moscow Math. Soc. 1971, vol. 25, pp. 131–288; 1972, vol. 26, pp. 199–239.
- 3. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 254 с.
- 4. Bruno A.D. Local Methods in Nonlinear Differential Equations. Berlin: Springer-Verlag, 1989. 348 p.
- 5. Брюно А.Д., Еднерал В.Ф. Нормальная форма и интегрируемость систем ОДУ // Программирование. 2006.№3. С. 22–29.
- 6. Bruno A.D., Edneral V.F. Normal forms and integrability of ODE systems // Programming and Computer Software, 2006, vol. 32, no. 3, pp. 139–144.
- 7. Edneral V.F. Integrable Cases of the Polynomial Lienard-type Equation with Resonance in the Linear Part // Mathematics in Computer Science. 2023. Vol. 17(19). DOI: 10.1007/s11786-023-00567-6.
- 8. Bruno A.D., Edneral V.F. Integration of a degenerate system of ODEs // Programming and Computer Software. 2024. Vol. 50. No. 2. Р. 128–137.
- 9. Rand R.H. Lecture Notes on Nonlinear Vibrations // Ithaca NY: Cornell University, 2012. 118 p.
- 10. Lienard A. Etude des oscillations entretenues // Revue generale de l’electricite. 1928. Vol. 23. Р. 901–912 and 946–954.
- 11. Edneral V.F., Khanin R. Application of the resonant normal form to high-order nonlinear odes using MATHEMATICA // Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003. Vol. 502. No. 2–3. Р. 643–645.
- 12. Bomze I.M. Lotka–Volterra equation and replicator dynamics: a two-dimensional classification // Biological Cybernetics. 1983. Vol. 48. Р. 201–211.
- 13. Romanovski V.G., Shafer D.S. The Center and Cyclicity Problems: A Computational Algebra Approach // Birkhuser, Boston, 2009. 330 p.
- 14. Edneral V.F. Integrable Cases of the Bautin System // MCS, 2025. In printing.
- 15. Леванов А.В., Антипенко Э.Е. Введение в химическую кинетику. М.: МГУ, 2006. 51 с.
- 16. Levanov A.V., Antipenko E.E. Introduction to chemical kinetics. M.: Moscow State University, 2006, 51 p.
- 17. Корзухин М.Д., Жаботинский А.М. Математическое моделирование химических и экологических автоколебательных систем. М.: Наука, 1965.
- 18. Korzukhin M.D., Zhabotinsky A.M. Mathematical modeling of chemical and environmental selfoscillating systems. M.: Nauka, 1965 (in Russ.).