Современные графические ускорители (GPU) позволяют существенно ускорить выполнение численных задач. Однако перенос программ на графические ускорители является непростой задачей, иногда требующей практически полного их переписывания. Графические ускорители CUDA, благодаря разработанной компанией NVIDIA технологии, позволяют иметь единый исходный код как для обычных процессоров (CPU), так и для CUDA. Однако распараллеливание на общей памяти все равно делается по-разному и его нужно указывать явно. Применение разработанной авторами библиотеки функционального программирования позволяет скрыть использование того или иного механизма распараллеливания на общей памяти внутри библиотеки и сделать пользовательский исходный код полностью независимым от используемого вычислительного устройства (CPU или CUDA). В настоящей статье показывается, как это можно сделать.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации