В данной работе исследуется возможность улучшения качества обработки изображений магнитно-резонансной томографии на основе использования сетей Колмогорова-Арнольда для фильтрации глобальных признаков сверточной нейронной сети. Недавно предложенные модели Колмогорова-Арнольда мотивированы одноименной теоремой из анализа действительного переменного и теории приближений о том, что каждая многомерная непрерывная функция на компакте может быть представлена в виде суперпозиции непрерывных функций одной переменной. Необходимость применения градиентного спуска при обучении накладывает ограничение дифференцируемости на параметризацию таких одномерных функций, так что на практике они часто ищутся в виде линейной комбинации B-сплайнов или других дифференцируемых базисных функций. В настоящем исследовании мы предлагаем метод адаптивного отбора базисных функций самой моделью в ходе обучения из заранее зафиксированной пользователем системы базисов. Предлагаемый подход основан на механизме внимания, успешно применяющемся в трансформерных сетях. В данной работе метод протестирован на задаче улучшения качества изображений магнитно-резонансной томографии на датасете IXI и демонстрирует лучшие средние значения PSNR и TV по тестовому набору данных. Не ограничивая общности, в систему базисных функций были включены: B-сплайны, полиномы Чебышева и функции Эрмита.
Подготовка входных данных для нейронной сети является ключевым шагом для достижения высокой точности ее предсказаний. Известно, что сверточные нейронные модели обладают низкой инвариантностью к изменению масштаба входных данных. Так, обработка многомасштабных полнослайдовых гистологических изображений сверточными сетями естественным образом поднимает вопрос выбора оптимального масштаба обработки. В данной работе эта задача решается путем итеративного анализа расстояний, выдаваемых сверточным классификатором, до разделяющей гиперплоскости при различных входных масштабах. Предлагаемый метод проверен на предобученной на данных PATH-DT-MSU глубокой архитектуре DenseNet121, решающей задачу по-патчевой классификации полнослайдовых гистологических изображений.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации