Статья посвящена использованию фильтров Габора для повышения эффективности сверточных нейронных сетей (CNN) в задачах анализа изображений, в частности сегментации. Рассматривается применение фильтров Габора как адаптивного компонента на начальных слоях CNN, что позволяет улучшить выделение текстурных и структурных признаков. Для достижения оптимального баланса между числом обучаемых параметров и точностью предложены адаптивные фильтры Габора, которые увеличивают количество каналов на входе без значительного усложнения модели. Проведен сравнительный анализ архитектур с использованием PSPNet для сегментации изображений, модифицированной адаптивными фильтрами Габора. Рассмотрены ограничения на размер фильтров, обеспечивающие устойчивость к вычислительным затратам. Подтверждена актуальность подхода на наборе данных для сегментации изображений, демонстрирующего улучшение точности при минимальном увеличении числа параметров.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации