Рассматривается проблема получения дифференциальных уравнений, определяющих вековые возмущения орбитальных элементов в многопланетной системе в случае, когда центральная звезда теряет свою массу изотропно, а массы планет могут изменяться анизотропно, что приводит к появлению реактивных сил. В качестве модели многопланетной системы используется классическая задача (n + 1) тел переменной массы, когда n тел движутся вокруг центральной звезды по квазиэллиптическим непересекающимся орбитам и взаимодействуют друг с другом в соответствии с законом всемирного тяготения. Предполагается, что массы тел изменяются с различными скоростями, причем законы изменения масс считаются произвольными заданными функциями времени. Получены дифференциальные уравнения движения тел в оскулирующих элементах апериодического движения по квазиконическим сечениям, соответствующие планетарным уравнениям Лагранжа. Обсуждается алгоритм вычисления возмущающих функций в виде степенных рядов по малым параметрам и получение дифференциальных уравнений, определяющих вековые возмущения орбитальных элементов. Все необходимые символьные вычисления выполняются с использованием системы компьютерной алгебры Wolfram Mathematica.
Обсуждается проблема построения периодических решений уравнений движения машины Атвуда, в которой оба груза одинаковой массы могут колебаться в вертикальной плоскости. Получены дифференциальные уравнения движения системы и описан алгоритм вычисления их решений, определяющих периодические колебания грузов при условии резонанса частот вида \(n{{\omega }_{1}} = m{{\omega }_{2}}\), где n и m – натуральные числа, в виде степенных рядов по малому параметру. Сравнение полученных результатов с соответствующими численными решениями уравнений движения подтверждает их корректность. Все необходимые вычисления выполняются с помощью системы компьютерной алгебры Wolfram Mathematica.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации