В данной работе предлагается программа, написанная в пакете символьных вычислений, позволяющая проверить, является ли регулярной особая точка линейной мероморфной системы произвольного порядка. Она основана на ранее известном способе приведения такой системы к линейному дифференциальному уравнению с мероморфными коэффициентами с помощью линейной замены.
Рассматриваются вопросы построения главной функции и абелевых дифференциалов 3-го типа на плоской алгебраической кривой над полем комплексных чисел, не имеющей особых точек. Алгоритм построения дифференциалов 3-го типа описан в Лекциях Вейерштрасса. В статье обсуждается его реализация в системе компьютерной алгебры Sage. Специфика этого алгоритма, равно как и самого понятия дифференциала 3-го типа, подразумевает использование не только рациональных чисел, но и алгебраических, причем даже тогда, когда уравнение кривой имеет целые коэффициенты. В Sage имеется встроенный инструментарий для работы с полем алгебраических чисел, который позволяет реализовать алгоритм Вейерштрасса почти дословно. На самом простом примере эллиптической кривой показано, что он требует слишком много ресурсов, выходя далеко за возможности офисного компьютера. Затем предложена и реализована симметризация метода, позволяющая существенно сэкономить ресурсы и решить названный пример.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации