ОМНПрограммирование Programming and Computer Software

  • ISSN (Print) 0132-3474
  • ISSN (Online) 3034-5847

Символьно-численная реализация модели адиабатических волноводных мод для двумерных нерегулярных волноводов

Код статьи
10.31857/S0132347424020066-1
DOI
10.31857/S0132347424020066
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том / Номер выпуска 2
Страницы
45-50
Аннотация
В работе построено символьно-численное решение уравнений Максвелла, описывающее направляемые моды двумерного плавно-нерегулярного волновода в рамках нулевого приближения модели адиабатических волноводных мод. Система линейных алгебраических уравнений, получаемая в нулевом приближеним модели адиабатических волноводных мод, решена символьно. Дисперсионное уравнение решено численно методом продолжения по параметру.
Ключевые слова
символьное решение линейных уравнений символьное решение дифференциальных уравнений адиабатические волноводные моды направляемые моды плавно-нерегулярный волновод
Дата публикации
15.04.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
32

Библиография

  1. 1. Sevastianov L.A., Egorov A.A. Theoretical analysis of the waveguide propagation of electromagnetic waves in dielectric smoothlyirregular integrated structures // Optics and Spectroscopy. 2008. V. 105. № 4. P. 576–584.
  2. 2. Egorov A.A., Sevastianov L.A. Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide // Quantum Electronics. 2009. V. 39. № 6. P. 566–574.
  3. 3. Egorov A.A., Lovetskiy K.P., Sevastianov A.L., Sevastianov L.A. Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation // Quantum Electronics. 2010. V. 40. № 9. P. 830–836.
  4. 4. Babich V.M., Buldyrev V.S. Asimptotic Methods in Short-Wave Diffraction Problems. Method of Reference Problems, Moscow: Nauka, 1972.
  5. 5. Divakov D.V., Sevastianov A.L. The Implementation of the Symbolic-Numerical Method for Finding the Adiabatic Waveguide Modes of Integrated Optical Waveguides in CAS Maple // Lecture Notes in Computer Science. 2019. V. 11661. P. 107–121.
  6. 6. Adams M.J. An Introduction to Optical Waveguides. Wiley, New York (1981).
  7. 7. Mathematics-based software and services for education, engineering, and research https://www.maplesoft.com/
  8. 8. Divakov D.V., Tyutyunnik A.A. Symbolic investigation of the spectral characteristics of guided modes in smoothly irregular waveguides // Program. Comput. Software. 2022. V. 48. № 2. P. 80–89.
  9. 9. Kuznetsov E.B., Shalashilin V.I. Solution of differential-algebraic equations using the parameter continuation method // Differ. Uravn. 1999. V. 35. № 3. P. 379–387.
  10. 10. Divakov D.V., Tyutyunnik A.A. Symbolic-numerical modeling of adiabatic waveguide mode in a smooth waveguide transition // Comput. Math. Math. Phys. 2023. V. 63. № 1. P. 95–105.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека