- Код статьи
- 10.31857/S013234742301003X-1
- DOI
- 10.31857/S013234742301003X
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 1
- Страницы
- 38-47
- Аннотация
- Здесь указан алгоритм решения следующей задачи. Пусть в n-мерном вещественном пространстве задано \(m < n\) целочисленных векторов. Их линейная оболочка образует линейное подпространство L в \({{\mathbb{R}}^{n}}\). Требуется вычислить такую унимодулярную матрицу, что линейное преобразование с ней переводит подпространство L в координатное. Также приведены программы, реализующие эти алгоритмы, и степенные преобразования, для которых они предназначены.
- Ключевые слова
- Дата публикации
- 17.09.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 20
Библиография
- 1. Хинчин А.Я. Цепные дроби. М.: Физматгиз, 1961.
- 2. Euler L. De relatione inter ternas pluresve quantitates instituenda // 1785, All Works 591.
- 3. Брюно А.Д. Локальный метод нелинейного анализа дифференциальных уравнений. М.: Наука, 1979. 252 с.
- 4. Брюно А.Д. Вычисление основных единиц числовых колец с помощью обобщенной цепной дроби // Программирование. 2019. № 2. С. 17–31. https://doi.org/10.1134/S0132347419020055
- 5. Thompson I. Understanding Maple. Cambridge University Press, 2016. 228 p.
- 6. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1.1). 2020. https://doi.org/10.5281/zenodo. 4066866. https://www.sagemath.org.
- 7. Meurer A., Smith C.P., [et al.]. SymPy: symbolic computing in Python // PeerJ Computer Science. 2017. V. 3. e103. ISSN 2376–5992. DOI: . URL: https://doi.org/10.7717/ peerj-cs.103.
- 8. Брюно А.Д. Степенная геометрия в алгебраических и дифференциальных уравнениях. М.: Физматлит, 1998. 288 с.
- 9. Брюно А.Д., Батхин А.Б. Разрешение алгебраической сингулярности алгоритмами степенной геометрии // Программирование. 2012. № 2. С. 11–28.